# Wissenschaftliches Symposium Myeloproliferative Neoplasien DGHO Jahrestagung 2017, 29.09.-03.10.2017

## Hochmolekulare Risikomarker bei MPN – Implementierung in den klinischen Alltag?

#### Konstanze Döhner

University Hospital of Ulm, Department of Internal Medicine III, Germany





## Offenlegung Interessenskonflikte Konstanze Döhner

1. Anstellungsverhältnis oder Führungsposition: nein

- JAHRESTAGUNG
  2017
  STUTTGART
  29.9.-3.10.
- 2. Beratungs- bzw. Gutachtertätigkeit: Novartis, Janssen, Celgene, Baxalta
- 3. Besitz von Geschäftsanteilen, Aktien oder Fonds: nein
- 4. Patent, Urheberrecht, Verkaufslizenz: nein
- 5. Honorare: Novartis, Janssen, Celgene, Baxalta
- 6. Finanzierung wissenschaftlicher Untersuchungen: nein
- 7. Andere finanzielle Beziehungen: nein
- 8. Immaterielle Interessenkonflikte: nein

## The 2016 Revision to the World Health Organization Classification of Myeloid Neoplasms

Daniel A. Arber, et al. Blood 2016 127:2391-2405

- Chronic myelogenous leukemia, BCR-ABL1 positive (CML)
- Chronic neutrophilic leukemia (CNL)
- Polycythaemia vera (PV)
- Essential thrombocythaemia (ET)
- Preprimary Myelofibrosis (prePMF)
- Overt primary Myelofibrosis
- Chronic eosinophilic leukemia, not otherwise specified (CEL-NOS)
- Myeloproliferative neoplasm, unclassifiable (MPN-U)

#### **Driver Mutations in MPN**

#### **Driver mutations:**

- implicated in the pathogenesis of MPN
- hyperproliferation of hemtapoetic cells > growth advantage
- functional relevant (e.g. cell lines, mouse models)
- required for maintenance of the disease

#### JAK2 V617F, CALR, MPL

- mainly restricted to MPN
- essential for the myeloproliferative phenotype
- ➤ All three driver mutations abnormally activate the cytokine receptor/JAK2 pathway and their downstream effectors (STATs)

### **Non-Driver Mutations in MPN**

#### **Non-driver mutations:**

- somatic mutations that do not primarly act on proliferation
- can modify and enhance effects of the driver mutation
- belong to different functional categories:
  - epigenetic regulators (TET2, DNMT3A, IDH1/2, EZH2, ASXL1)
  - signaling molecules (NF1, NRAS, KRAS, LNK, CBL, FLT3)
  - splicing complex (SF3B1, SRSF2, U2AF1,)
  - transcription factors (TP53, NFE2, CUX1, IKZF1, ETV6, RUNX1)
- not restricted to MPN, even more frequent in MDS
- modify differentiation and contribute to myelodysplastic features
- contribute to disease progression and leukemic transformation
- allowing the identification of high-risk patients

### Non-Driver-Mutations in MPN: Prognostic Impact

- TET2: mutated in 12% of MPN (21/181 JAK2pos; 3/17 JAK2neg.); present in hematopoietic stem cells, can precede JAK2 V617F Delhommeau FN et al., N Engl J Med. 2009;360(22):2289-301
- DNMT3A: mutated in 10% of MPN (12/115), most frequent in sAML and MF; co-occurrence with mutations in JAK2, IDH1/2, and ASXL1 Stege/
- ASXL: prePN with

Carbul

EZH2:

## Mutations in epigenetic modifiers

4/201

3/10,

ence

- mostly homozygous mutations; association with worse outcome Ernst T et al., Nat. Genet. 2010;42(8):722-6
- *IDH1/2*: mutated in 4.2% of PMF and 21.6% of blast-phase MPN; predicts worse survival in blast-phase MPN *Tefferi A et al., Leukemia. 2010;24(7):1302-9*

### **Non-Driver-Mutations in MPN**

| Gene       | Protein function                                                                  | Frequency                          | Consequences                  |  |
|------------|-----------------------------------------------------------------------------------|------------------------------------|-------------------------------|--|
| ASXL1      | Chromatin binding protein; associated with PRC1 and 2                             | 25% PMF<br>1-3% ET/PV              | Initiation, rapid progression |  |
| TET2       | demathylation; oxidation of 5mC into 5hmC                                         | 10-20% MPN (ET, PV and PMF)        | Inititation                   |  |
| DNMT3A     | DNA methylation                                                                   | 5-10% MPN (ET, PV and PMF)         | Initiation                    |  |
| SRSF2      | Serine/arginin-rich pre- RNA splicing factor                                      | <2% ET, 10-15% PMF                 | Initiation? progression       |  |
| U2AF1      | RNA splicing factor                                                               | 10-15% PMF                         | Phenotypic change (anemia)    |  |
| IDH1/IDH2  | Neomorphic enzyme, generation of 2HG > blocking a-ketoglutarate-dependent enzymes | 1-3% PMF, each                     | Initiation, progression       |  |
| EZH2       | H3K27 methyltransferase                                                           | 5-10% PMF                          | Initiation, progression       |  |
| TP53/RUNX1 | Transcription factor                                                              | <5%/<3% each;<br>20%/10% sAML each | Progression to leukemia       |  |

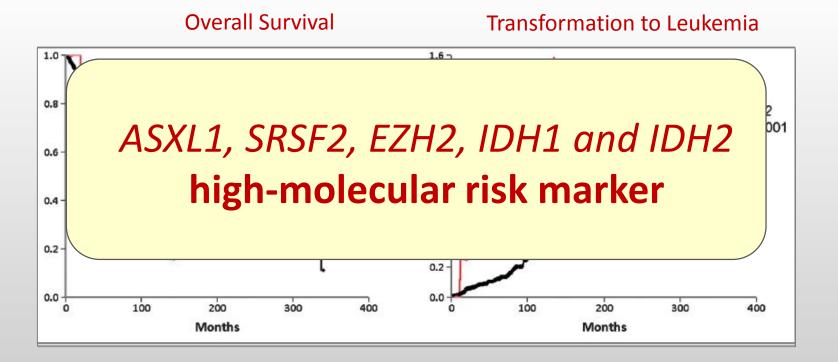
## High Molecular Risk Markers in PMF

Vannucchi AM, et al. Leukemia. 2013;27(9):1861-9

- In total 879 PMF patients from two cohorts (European n=483, Mayo Clinic n=396) were studied
- Evaluation of the individual and combinatorial prognostic relevance of somatic mutations in ASXL1, SRSF2, EZH2, TET2, DNMT3A, CBL, IDH1/2, MPL and JAK2
- Validation of the findings from European cohort in Mayo Clinic cohort

#### Mutation frequency n=483 (%)

| JAK2   | 59.2 |
|--------|------|
| ASXL1  | 21.7 |
| TET2   | 9.7  |
| SRSF2  | 8.5  |
| DNMT3A | 5.7  |
| MPL    | 5.2  |
| EZH2   | 5.1  |
| CBL    | 4.4  |
| IDH1/2 | 2.6  |

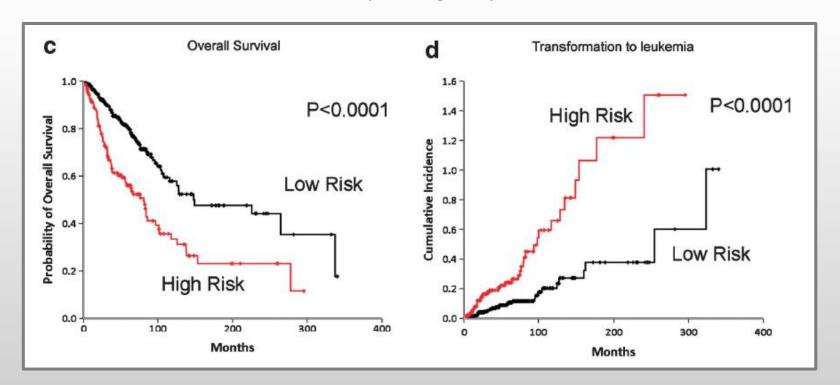

#### IPSS: LOW INT-1 INT-2 HIGH



## High Molecular Risk Markers in PMF

Vannucchi AM, et al. Leukemia. 2013;27(9):1861-9

- ASXL1, SRSF2, EZH2: inter-independently associated with significant shortened survial in univariate and multivariable analysis
- ASXL1, IDH1/2, EZH2, SRSF2: associated with adverse leukemia-free survival in univariate analysis; in multivariable analysis ASXL1, IDH1/2, and SRSF2, but not EZH2 remained significant

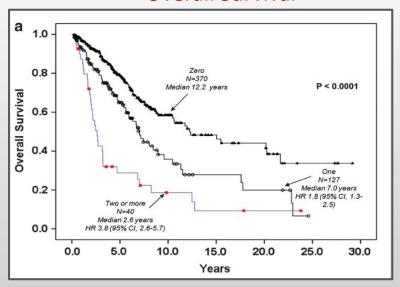



## High Molecular Risk Markers in PMF

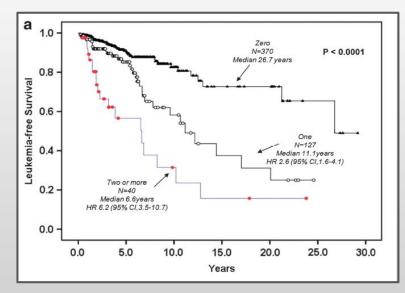
Vannucchi AM, et al. Leukemia. 2013;27(9):1861-9

#### ASXL1, SRSF2, EZH2, IDH1 and IDH2

- High risk: mutated in at least one of the five HMR genes
- Low risk: no HMR mutation
- Multivariable analysis for survival: independent prognostic value of the mutationally risk groups




## High Molecular Risk Markers in PMF - The "number" is prognostically relevant -


Guglielmelli P et al. Leukemia. 2014; 28:1804–1810

- A total of 797 PMF patients were recruited from Europe (n=537) and the Mayo Clinic (n=260)
- 167 (31%) patients of the Europe cohort had HMR; 127 (23.6%) had one and 40 (7.4%) had two or more HMR mutations
- The presence of ≥ 2 HMR mutations predicted the worst survival (median 2.6 years) and shortened leukemia-free survival

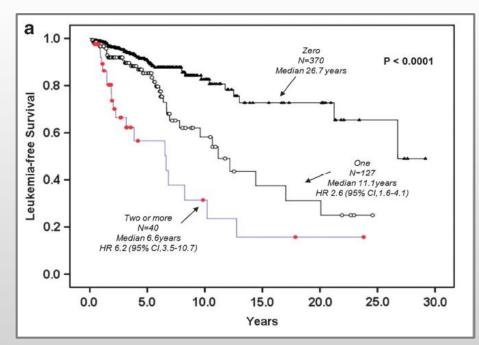
#### **Overall Survival**



#### Transformation to Leukemia



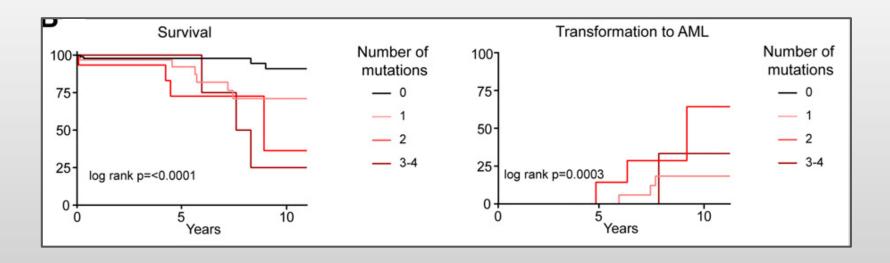
## High Molecular Risk Markers in PMF - The "number" is prognostically relevant -


Guglielmelli P et al. Leukemia. 2014; 28:1804–1810

#### Low plus intermediate-1 risk IPSS categories

#### **Overall Survival**

#### 1.0 P < 0.0001 Zero 8.0 N = 277Median 20.2 years 0.6 0.4 Median 11.3years HR 1.4 (95% CI, 0.9-2.4) 0.2 Two or more N = 20Median 3.2 years 0.0 15.0 20.0 25.0 5.0 10.0 30.0 0.0 Years


#### Leukemia-free survival



## **Prognostic Impact of Somatic Mutations in MPN**

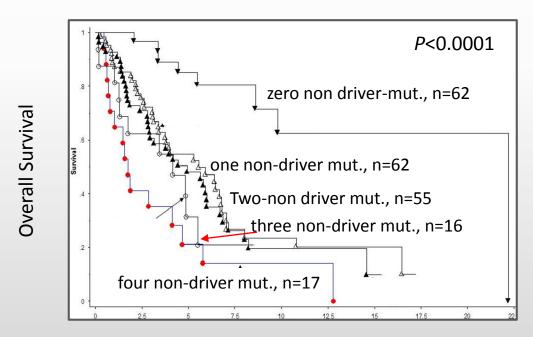
Lundberg P et al. Blood. 2014; 123(14):2220-8

- Targeted NGS approach of 104 genes in 197 MPN [PV n=94; ET n=69; PMF n=34] pts to evaluate clinical outcome and clonal evolution
- Somatic mutations in 90% of the pts; 37% other than JAK2 V617F and CALR
- NGS in serial samples: no significant change in number of mutations during a long follow-up > low mutation rate
- Presence of ≥2 mutations: significantly reduced OS and increased risk of transformation to leukemia



### **Targeted Next-Generation Sequencing in PMF:**

## Number of non-driver mutations is prognostically relevant


- Targeted NGS approach of 27 genes in 180 PMF pts to identify additional mutations and to evaluate the prognostic value of number of mutations
- TET2, DNMT3A, IDH1, IDH2, ASXL1, EZH2, SUZ12, SRSF2, SF3B1, ZRSR2, U2AF1, PTPN11, Tp53, SH2B3, RUNX1, CBL, NRAS, JAK2, CSF3R, FLT3, KIT, CALR, MPL, NPM1, CEBPA, IKZF, and SETBP1
- Mutations other than JAK2, CALR or MPL in 150 (83%) of the pts
- DIPSS-plus high/intermediate-2 risk: higher number of mutations (*P*=.0004), higher mutational frequencies for *ASXL1* (*P*=0.02), *SRSF2* (*P*=.004), and *CBL* (P=0.02)

| M | utation fre | quencies |
|---|-------------|----------|
|   | ASXL1       | 36%      |
|   | TET2        | 18%      |
|   | SRSF2       | 17%      |
|   | U2AF1       | 17%      |
|   | ZRSR2       | 11%      |
|   | SF3B1       | 10%      |
|   | DNMT3A      | 9%       |
|   | TP53        | 7%       |
|   | CBL         | 5%       |
|   | RUNX1       | 3%       |
|   |             |          |

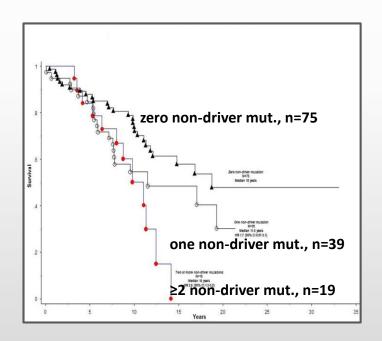
## **Targeted Next-Generation Sequencing in PMF:**

## Number of non-driver mutations is prognostically relevant

 Multivariate analysis: 1-3 mutations, ≥4 mutations, RUNX1, CBL, ASXL1 and SRSF2 mutations were independently associated with shortened survival



## **Targeted Next-Generation Sequencing in PV and ET:**


## Number of non-driver mutations is prognostically relevant

 Same targeted NGS approach of 27 genes in PV (n=133) and ET (n=181) pts to identify additional mutations and to evaluate the prognostic value of number of mutations

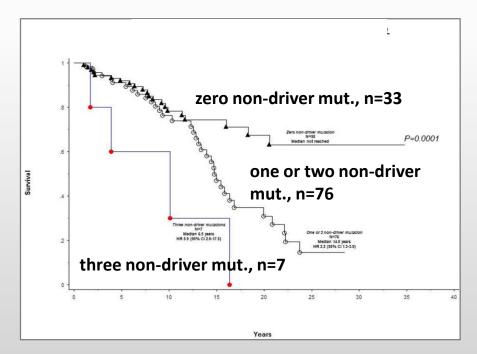
#### Polycythemia Vera:

- Mutations other than JAK2, CALR or MPL in 58 (44%) of the pts (18% TET2, 11% ASXL1, 5% SH2B3, 3% SF3B1)
- Number of mutations was significantly associated with OS and MF-free survival

Survial of 133 PV pts. stratified by number of non-driver mutations



## **Targeted Next-Generation Sequencing in PV and ET:**

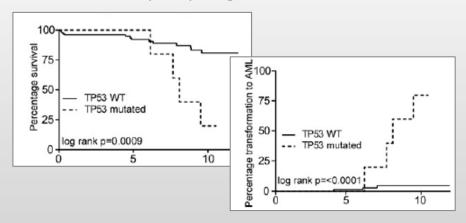

## Number of Non-driver Mutations is prognostically relevant

#### **Essential Thrombocythemia:**

Mutations other than JAK2, CALR or MPL in 83 (46%) of the pts (13% TET2, 11% ASXL1, 6% DNMT3A, 5% SF3B1)

Number of mutations was significantly associated with OS but not with MFS

or LFS




Survial of 181 ET pts stratified by number of non-driver mutations

Tefferi A, et al. Blood 2015 126:#354, ASH

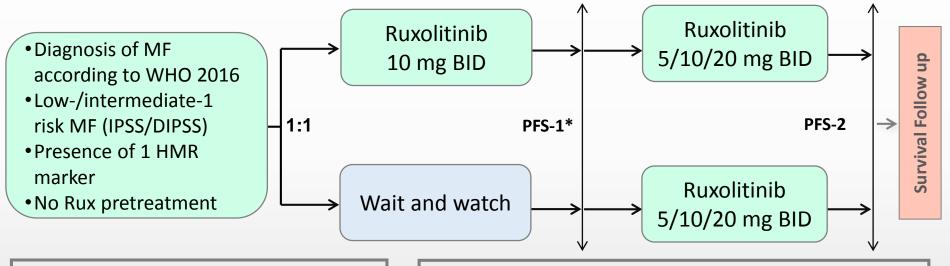
## **Molecular Markers for Disease Progression**

- Mutations in genes involved in transcription or DNA damage are associated with leukemic transformation:
  - RUNX1 (acquired at the time of transformation) > not predictive
  - TP53 > hemizygous / homozygous>> rapid progression



| Transformation   | Clinical risk factors                                                         | Genetic risk factors                |  |
|------------------|-------------------------------------------------------------------------------|-------------------------------------|--|
| Post-PV MF       | Age<br>Leukocytosis<br>Disease duration<br>Reticulin fibrosis<br>Splenomegaly | JAK2V617F allele burden             |  |
| Post-PV Leukemia | Age<br>Leukocytosis<br>Reticulin fibrosis                                     | Abnormal karyotype<br>TP53<br>RUNX1 |  |
| Post-ET MF       | Age Leukocytosis Anemia Reticulin fibrosis                                    | Absent JAK2V617F mutation<br>ASXL1  |  |
| Post-ET leukemia | Age Leukocytosis Anemia Reticulin fibrosis Thrombosis Platelets ≥ 1000×10°/I  | TP53<br>RUNX1                       |  |

Abbreviations: ET, essential thrombocythemia; MF, myelofibrosis; PV polycythemia vera.


## **Summary and Perspective**

- In PMF 5 "high molecular risk" (HMR) markers have been identified that are significantly associated with survival and transformation risk to leukemia: ASXL1, SRSF2, EZH2, IDH1 and IDH2
- In PMF HMR markers should be considered for implementation into the current risk-stratification sytems and they should be considered for treatment decisions, in particular within the context of alloSCT
- In MF low- and intermediate-1 risk (IPSS/DIPSS) patients with HMR mutations further studies are needed to evaluate if early treatment delays disease progression
- In ET and PV the number of non-driver mutations might be of prognostic relevance; however the prognostic and predictive value has to be determined in prospective clinical studies
- TP53 and RUNX1 mutations are clearly associated with disease progression and thus can be used for treatment decisions (alloSCT)

## **GSG-MPN03-17 Study Proposal**

randomized, open-label, multicenter, Phase III study investigating the efficacy and safety of ruxolitinib versus wait and watch in low and intermediate-1 risk (IPSS/DIPSS) myelofibrosis patients harboring high molecular risk marker mutations

 Evaluation of safety and efficacy of Ruxolitinib in patients with low-and intermediate-risk 1 (IPSS/DIPSS) MF harbouring HMR mutations



#### **Population**

- Low-/intermediate-1 risk MF (IPSS/DIPSS)
- ANC ≥ 1.000/μl
- Platelet count >  $75.000/\mu$ l
- MPN-SAF TSS ≤ 50
- Not considered for alloSCT

#### **Primary endpoint**

\*Progression free survival (PFS-1) from date of randomization until disease progression (modified criteria)

#### **Secondary endpoint**

- PFS-2, safety and tolerance, symptoms, QOL, OS
- \* Disease progression >> patients will be treated in PFS-2 with RUX 5/15/20 mg BID

## Acknowledegment

# The German Study Group for Myeloproliferative Neoplasms (GSG-MPN) https://www.cto-im3.de/gsgmpn/

Haifa Al-Ali

Nikolaus von Bubnoff

**Thomas Ernst** 

Thomas Fischer

Ulrich Germing

Florian Heidel

**Andreas Hochhaus** 

Susanne Isfort

**Martin Griesshammer** 

**Tim Brümmendorf** 

Konstanze Döhner

Steffen Koschmieder

and many others.....

Thomas Kindler

Nicolaus Kröger

Eva Lengfelder

Heike Pahl

**Andreas Reiter** 

Frank Stegelmann

**Raoul Tibes** 

Dominik Wolf